Construction of tissue-engineered laryngeal cartilage with a hollow, semi-flared shape using poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) as a scaffold
نویسندگان
چکیده
The aim of the present study was to construct tissue-engineered laryngeal cartilage with a hollow, semi-flared shape using a poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHH) scaffold. Porous PHBHH was prepared and formed into a hollow, semi-flared shape, and the cell-material composites were cultured for one week in vitro prior to implantation in vivo. Cells of the nine rabbits of the experimental group were filled and encapsulated in the myofascial flap-shaping material composite for in situ implantation. The three rabbits in the control group were treated with the shaping material without the chondrocytes. Cartilage regeneration was assessed at six, 12 and 18 weeks after surgery. In the experimental group, the shape and porosity of the material were ideal, the cells exhibited good adhesion with the material and the myofascial flap blood supply was rich. The engineered laryngeal cartilage with the hollow, semi-flared shape was ideally formed, and the cartilage formed at six weeks after the surgery. Further maturation of the cartilage was observed at 12 and 18 weeks after the surgery. PHBHH was a suitable material for the formation of a hollow, semi-flared shape with good cellular compatibility. Myofascial flap filling and wrapping can be used to build tissue-engineered laryngeal cartilage with a hollow, semi-flared shape.
منابع مشابه
Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)-based scaffolds for tissue engineering
Development and selection of an ideal scaffold is of importance for tissue engineering. Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) is a biocompatible bioresorbable copolymer that belongs to the polyhydroxyalkanoate family. Because of its good biocompatibility, PHBHHx has been widely used as a cell scaffold for tissue engineering. This review focuses on the utilization of PHBHHx-base...
متن کاملSilk fibroins modify the atmospheric low temperature plasma-treated poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) film for the application of cardiovascular tissue engineering
Tissue engineered scaffold is one of the hopeful therapies for the patients with organ or tissue damages. The key element for a tissue engineered scaffold material is high biocompatibility. Herein the poly (3hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) film was irradiated by the low temperature atmospheric plasma and then coated by the silk fibroins (SF). After plasma treatment, the surface ...
متن کاملPartial Resurfacing of the Distal Femoral Cartilage Defect with Stem Cell- Seeded Poly-Vinyl-Alcohol (PVA) Scaffold
Objective- To evaluate the biological compatibility of differentiated stem cells embedded in poly-vinyl-alcohol (PVA) scaffolds for repair of distal femoral cartilage defect. Design- Experimental in vivo study. Animals- Twelve adult male New Zealand white rabbits were used which were divided into two groups (I, II) six rabbits each. Procedures- Mesenchymal stem cells were isolated from h...
متن کاملEngineered Aeromonas hydrophila for enhanced production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) with alterable monomers composition.
Aeromonas hydrophila 4AK4 produces poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) containing 3-hydroxybutyrate (3HB) and about 15 mol% 3-hydroxyhexanoate (3HHx) from dodecanoate. To study the factors affecting the monomer composition and PHBHHx content, genes encoding phasin (phaP), PHA synthase (phaC) and (R)-specific enoyl-CoA hydratase (phaJ) from Aeromonas punctata (formerly named A...
متن کاملAdditive Manufacturing of Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)/poly(ε-caprolactone) Blend Scaffolds for Tissue Engineering
Additive manufacturing of scaffolds made of a polyhydroxyalkanoate blended with another biocompatible polymer represents a cost-effective strategy for combining the advantages of the two blend components in order to develop tailored tissue engineering approaches. The aim of this study was the development of novel poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)/ poly(ε-caprolactone) (PHBHHx/PCL) b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2015